Using computer simulation. Based on examples from the infer package. Code for Quiz 13.
Load the R package we will use.
Replace all the instances of ???. These are answers on your moodle quiz.
Run all the individual code chunks to make sure the answers in this file correspond with your quiz answers
After you check all your code chunks run then you can knit it. It won’t knit until the ??? are replaced
Save a plot to be your preview plot
The data this quiz is a subset of HR
Look at the variable definitions
Note that the variables evaluation and salary have been recoded to be represented as words instead of numbers
Set random seed generator to 123
set.seed(123)
hr_2_tidy.csv is the name of your data subset
Read it into and assign to hr
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv", col_types = "fddfff")
use the skim to summarize the data in hr
skim(hr)
Name | hr |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
gender | 0 | 1 | FALSE | 2 | mal: 256, fem: 244 |
evaluation | 0 | 1 | FALSE | 4 | bad: 154, fai: 142, goo: 108, ver: 96 |
salary | 0 | 1 | FALSE | 6 | lev: 95, lev: 94, lev: 87, lev: 85 |
status | 0 | 1 | FALSE | 3 | fir: 194, pro: 179, ok: 127 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | 0 | 1 | 39.86 | 11.55 | 20.3 | 29.60 | 40.2 | 50.1 | 59.9 | ▇▇▇▇▇ |
hours | 0 | 1 | 49.39 | 13.15 | 35.0 | 37.48 | 45.6 | 58.9 | 79.9 | ▇▃▂▂▂ |
The mean hours worked per week is: 49.4
#Q: Is the mean number of hours worked per week 48? specify
that hours
is the variable of interest
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
#generate 1000 replicates representing the null hypothesis
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups: replicate [1,000]
replicate hours
<int> <dbl>
1 1 39.7
2 1 44.3
3 1 46.8
4 1 33.7
5 1 39.6
6 1 39.5
7 1 40.5
8 1 55.8
9 1 72.6
10 1 35.7
# ... with 499,990 more rows
The output has 1000 rows
calculate the distribution of statistics from the generated data
Assign the output null_t_distribution
Display null_t_distribution
null_t_distribution <- hr %>%
specify(response = age) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t")
null_t_distribution
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 0.144
2 2 -1.72
3 3 0.404
4 4 -1.11
5 5 0.00894
6 6 1.46
7 7 -0.905
8 8 -0.663
9 9 0.291
10 10 3.09
# ... with 990 more rows
null_t_distribution has 1000 t-stats
visualize the simulated null distribution
visualise(null_t_distribution)
calculate the statistic from your observed data
Assign the output observed_t_statistic
Display observed_t_statistic
observed_t_statistic <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
calculate(stat = "t")
observed_t_statistic
# A tibble: 1 x 1
stat
<dbl>
1 2.37
get_p_value from the simulated null distribution and the observed statistic
p_value <- null_t_distribution %>%
get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
p_value
# A tibble: 1 x 1
p_value
<dbl>
1 0.014
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
If the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true mean number of hours worked was 48? No
SEE QUIZ is the name of your data subset
Read it into and assign to hr_2
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv", col_types = "fddfff")
use skim to summarize the data in hr_2 by gender
hr_2 %>%
group_by(gender) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | gender |
Variable type: factor
skim_variable | gender | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
evaluation | male | 0 | 1 | FALSE | 4 | bad: 72, fai: 67, goo: 61, ver: 47 |
evaluation | female | 0 | 1 | FALSE | 4 | bad: 76, fai: 71, goo: 61, ver: 45 |
salary | male | 0 | 1 | FALSE | 6 | lev: 47, lev: 43, lev: 43, lev: 42 |
salary | female | 0 | 1 | FALSE | 6 | lev: 51, lev: 46, lev: 45, lev: 43 |
status | male | 0 | 1 | FALSE | 3 | fir: 98, pro: 81, ok: 68 |
status | female | 0 | 1 | FALSE | 3 | fir: 98, pro: 91, ok: 64 |
Variable type: numeric
skim_variable | gender | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | male | 0 | 1 | 38.23 | 10.86 | 20 | 28.9 | 37.9 | 47.05 | 59.9 | ▇▇▇▇▅ |
age | female | 0 | 1 | 40.56 | 11.67 | 20 | 31.0 | 40.3 | 50.50 | 59.8 | ▆▆▇▆▇ |
hours | male | 0 | 1 | 49.55 | 13.11 | 35 | 38.4 | 45.4 | 57.65 | 79.9 | ▇▃▂▂▂ |
hours | female | 0 | 1 | 49.80 | 13.38 | 35 | 38.2 | 45.6 | 59.40 | 79.8 | ▇▂▃▂▂ |
Females worked an average of 49.8 hours per week
Males worked an average of 49.6 hours per week
Use geom_boxplot to plot distributions of hours worked by gender
hr_2 %>%
ggplot(aes(x = gender, y = hours)) +
geom_boxplot()
hr_2 %>%
specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 49.6 male
2 39.2 female
3 63.2 female
4 42.2 male
5 54.7 male
6 54.3 female
7 37.3 female
8 45.6 female
9 35.1 female
10 53 male
# ... with 490 more rows
hypothesize that the number of hours worked and gender are independent
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesise(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 49.6 male
2 39.2 female
3 63.2 female
4 42.2 male
5 54.7 male
6 54.3 female
7 37.3 female
8 45.6 female
9 35.1 female
10 53 male
# ... with 490 more rows
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours gender replicate
<dbl> <fct> <int>
1 55.7 male 1
2 35.5 female 1
3 35.1 female 1
4 44.2 male 1
5 52.8 male 1
6 46 female 1
7 41.2 female 1
8 52.9 female 1
9 35.6 female 1
10 35 male 1
# ... with 499,990 more rows
The output has 500,000 rows.
calculate the distribution of statistics from the generated data
Assign the output null_distribution_2_sample_permute
Display null_distribution_2_sample_permute
null_distribution_2_sample_permute <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("female", "male"))
null_distribution_2_sample_permute
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 -1.81
2 2 -1.29
3 3 0.0525
4 4 -0.793
5 5 0.826
6 6 0.429
7 7 0.0843
8 8 -0.264
9 9 2.42
10 10 0.603
# ... with 990 more rows
null_t_distribution has 1000 t-stats
visualize the simulated null distributionvisualise(null_distribution_2_sample_permute)
calculate the statistic from your observed data
Assign the output observed_t_2_sample_stat
Display observed_t_2_sample_stat
observed_t_2_sample_stat <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
calculate(stat = "t", order = c("female", "male"))
observed_t_2_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 0.208
null_t_distribution %>%
get_p_value(obs_stat = observed_t_2_sample_stat , direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.878
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_2_sample_stat , direction = "two-sided")
If the p-value < 0.05? No
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? Yes
SEE QUIZ is the name of your data subset
Read it into and assign to hr_anova
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
use skim to summarize the data in hr_anova by status
hr_anova %>%
group_by(status) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | status |
Variable type: factor
skim_variable | status | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
gender | fired | 0 | 1 | FALSE | 2 | fem: 96, mal: 89 |
gender | ok | 0 | 1 | FALSE | 2 | fem: 77, mal: 76 |
gender | promoted | 0 | 1 | FALSE | 2 | fem: 87, mal: 75 |
evaluation | fired | 0 | 1 | FALSE | 4 | bad: 65, fai: 63, goo: 31, ver: 26 |
evaluation | ok | 0 | 1 | FALSE | 4 | bad: 69, fai: 59, goo: 15, ver: 10 |
evaluation | promoted | 0 | 1 | FALSE | 4 | ver: 63, goo: 60, fai: 20, bad: 19 |
salary | fired | 0 | 1 | FALSE | 6 | lev: 41, lev: 37, lev: 32, lev: 32 |
salary | ok | 0 | 1 | FALSE | 6 | lev: 40, lev: 37, lev: 29, lev: 23 |
salary | promoted | 0 | 1 | FALSE | 6 | lev: 37, lev: 35, lev: 29, lev: 23 |
Variable type: numeric
skim_variable | status | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | fired | 0 | 1 | 38.64 | 11.43 | 20.2 | 28.30 | 38.30 | 47.60 | 59.6 | ▇▇▇▅▆ |
age | ok | 0 | 1 | 41.34 | 12.11 | 20.3 | 31.00 | 42.10 | 51.70 | 59.9 | ▆▆▆▆▇ |
age | promoted | 0 | 1 | 42.13 | 10.98 | 21.0 | 33.40 | 42.95 | 50.98 | 59.9 | ▆▅▆▇▇ |
hours | fired | 0 | 1 | 41.67 | 7.88 | 35.0 | 36.10 | 38.90 | 43.90 | 75.5 | ▇▂▁▁▁ |
hours | ok | 0 | 1 | 48.05 | 11.65 | 35.0 | 37.70 | 45.60 | 56.10 | 78.2 | ▇▃▃▂▁ |
hours | promoted | 0 | 1 | 59.27 | 12.90 | 35.0 | 51.12 | 60.10 | 70.15 | 79.7 | ▆▅▇▇▇ |
Employees that were fired worked an average of 41.7 hours per week
Employees that were ok worked an average of 48 hours per week
Employees that were promoted worked an average of 59.3 hours per week
Use geom_boxplot to plot distributions of hours worked by statushr_anova %>%
ggplot(aes(x = status, y = hours)) +
geom_boxplot()
hr_anova %>%
specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# ... with 490 more rows
hr_anova %>%
specify(response = hours, explanatory = status) %>% hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours status replicate
<dbl> <fct> <int>
1 40.3 fired 1
2 40.3 ok 1
3 37.3 fired 1
4 50.5 promoted 1
5 35.1 ok 1
6 67.8 ok 1
7 39.3 promoted 1
8 35.7 fired 1
9 40.2 promoted 1
10 38.4 ok 1
# ... with 499,990 more rows
The output has 500,000 rows.
calculate the distribution of statistics from the generated data
Assign the output null_distribution_anova
Display null_distribution_anovanull_distribution_anova <- hr_anova %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
null_distribution_anova has 1000 F-stats
visualize the simulated null distributionvisualize(null_distribution_anova)
calculate the statistic from your observed data
Assign the output observed_f_sample_stat
Display observed_f_sample_statobserved_f_sample_stat <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
calculate(stat = "F")
observed_f_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 115.
get_p_value from the simulated null distribution and the observed statistic
null_distribution_anova %>%
get_p_value(obs_stat = observed_f_sample_stat , direction = "greater")
# A tibble: 1 x 1
p_value
<dbl>
1 0
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = null_distribution_anova, direction = "greater")
If the p-value < 0.05? Yes.
Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? No.